Regional Earthquake Likelihood Models (RELM)

- Collaboration between Southern California Earthquake Center (SCEC) and USGS
- To produce suite of credible source models for southern California
 - Test assumptions about earthquake nucleation and termination
 - Explore range of uncertainty in hazard and risk

16 Oct 06 NEHRP

Some assumptions to test

- · Magnitude limited by fault length
- b-value varies spatially
- Earthquake probability increases with time since "last earthquake"
- Earthquake probability depends on estimate of Coulomb stress
 - Dislocation model of big quakes
 - Isotropic model based on smaller quakes

6 Oct 06 NEHRP 2

RELM agreements 2001

- m>5
- 5 year test period with annual review
- 32<lat<37, -122<lon<-114
- 0.05 deg grid
- 0.1 deg magnitude bins
- · Characterize earthquakes by mw, hypocenter

16 Oct 06 NEHRP

RELMTEST Agreements 2003

- Forecast = vector of rates: quakes per year (or day) in bins of lat, lon, mag, orientation.
- Forecasters provide numbers, not programs
- All quakes count: no distinction between foreshocks, main shocks, and aftershocks.
- Bins of 0.05 deg *0.05 deg * 0.1 mag
- · Two main "menu items:"
 - Five year forecast of m>5, no updates
 - Five year forecast of m>4, updated daily
- Special orders ok if there are multiple models, and sufficient earthquakes for test

16 Oct 06 NEHRP 4

RELM Papers, SRL 07		
Petersen, Cao, Campbell, & Frankel	Time-independent and Time-dependent Seismic Hazard Assessment for the State of California	
Gerstenberger, Jones, and Wiemer	Short-Term Aftershock Probabilities: Case Studies in California	
Ward	Methods for evaluating earthquake potential and likelihood in and around California	
Wiemer & Schorlemmer	ALM: An Asperity-based Likelihood Model for California	
Helmstetter, Kagan, & Jackson	High-resolution time-independent forecast for M 5 earthquakes in California	
Kagan, Jackson, & Rong	A Testable Five Year Forecast of Moderate and Large Earthquakes in Southern California Based on Smoothed Seismicity	
Shen, Jackson, & Kagan	Implications of Geodetic Strain Rate for Future Earthquakes, With a Five-Year Forecast of M5 Earthquakes in Southern California	
Bird & Liu	Seismic hazard inferred from tectonics: California	
16 Oct 06	NEHRP 5	

RELM Papers, SRL 07		
Holliday, Chen, Tiampo, Rundle, Turcotte, & Donnelan	A RELM earthquake forecast based on pattern informatics	
Ebel, Chambers, Kafka, and Baglivo	Non-Poissonian Earthquake Clustering and the Hidden Markov Model as Bases for Earthquake Forecasting in California	
Rhoades	Application of the EEPAS Model to Forecasting Earthquakes of Moderate Magnitude in Southern California	
Console, Murru, Catalli, and Falcone	Real time forecasts through an earthquake clustering model constrained by the rate-and-state constitutive law: Comparison with a purely stochastic ETAS model	
Field et al.	Overview Paper	
Schorlemmer, Gerstenberger, Wiemer, & Jackson	Earthquake Likelihood Model Testing	
Schorlemmer & Gerstenberger	RELM Testing Center	
16 Oct 06	NEHRP 6	

Double Log Likelihood Ratio • R = (L2-L02)-(L1-L01) - L1=Log likelihood score for hypothetical catalog, evaluated using hypothesis 1 - L01 = Log likelihood score for observed catalog, evaluated using hypothesis 2 - R=0 if hypothetical catalog is observed catalog

16 Oct 06

How to interpret SS curves Compare two models with equal prior status: each is "null hyhpothesis" for the other Plotted so that data favoring H2 are to right, those favoring H1 are to left α is probability that H1 could look more favorable to H2 than actual data; if α is less than 0.05, reject H1 β is probability that H2 could look less favorable to H2 than actual data; if β is less than 0.05, reject H2 Reversibility: swapping H1 and H2 swaps α and β. That is α12=β21

NEHRP

16 Oct 06

Conclusions and comments

- · Testing is possible but not easy
 - Many investigators willing to go for it
 - Requires fairly detailed rules
 - Requires compromises (e.g., point sources)
 - All possible quakes must be assigned probability in advance
- Clustering causes big problems
 - Present tests assume Poisson behavior
 - Conditional probabilities change during experiment, requiring simulation of all possible outcomes
- Example favors smoothed seismicity over fault based model,
 - But retrospective test unfair
 - Fault-based model (NSHMP 96) not optimized for Likelihood test

16 Oct 06 NEHRP 1